skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Magori, Krisztian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A diverse metabolome exists on amphibian skin that mediates interactions between hosts and skin microbiomes. Tetrodotoxin is one such metabolite that occurs across a variety of taxa, and is particularly well studied in newts of the genusTarichathat are susceptible to infection with chytrid fungi. The interaction of tetrodotoxin with the skin microbiome, including pathogenic fungi, is not well understood, and here we describe these patterns across 12 populations ofTaricha granulosaandT. torosain Washington, Oregon, and California. We found no correlation of TTX andBatrachochytrium dendrobatidis(Bd) infection in eitherT. granulosaorT. torosa, a pattern inconsistent with a previous study. In addition, TTX, but not Bd, was significantly correlated with the skin microbiome composition inT. granulosa. InT. torosa, however, Bd, but not TTX, was correlated with the skin microbiome structure. The relationship between TTX and skin microbiome composition differed between species, with significant correlations observed only inT. granulosa, which exhibited higher TTX concentrations. We also detected significantly higher abundances of bacterial taxa (e.g., Pseudomonadaceae) associated with TTX production in newts with higher skin TTX. These taxa (ASVs matchingAeromonas, Pseudomonas, Shewanella, andSphingopyxis) were associated with all body sites of previously sampledT. granulosa, but not found in soil samples. Our results suggest that toxins can shape the newt skin microbiome and may influence pathogen infection through indirect mechanisms, as TTX showed no direct inhibition of Bd orB. salamandrivoransgrowth. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026